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A metric segment fronx to y, denoted byz, y], is a subset of a metric spac&, d) such that
hay:z — d(x, z) is an isometry fromz, y] onto [0, d(z,y)] C R, and an open metric segment
from z to y, denoted by(x,y), is [z, y] ~ {z,y}, whereR is the set of real numbers with the
Euclidean metric(M, d), a metric space, is called a metric tree (T-theoryRotree) if there
exists a unique metric segment fromto y, and the equalityz, z| N [z, y] = {z} implies the
equality[z, z] U [z, y] = [z, y] for all z,y, z € M. The study of metric trees began with J. Tits [in
Contributions to algebra (collection of papers dedicated to Ellis Kolch®7)7—-388, Academic
Press, New York, 197MR0578488 (58 #2820%and since then, applications have been found
for metric trees within many fields of mathematics such as geometry, topology, and group theo
[M. Bestvina, inHandbook of geometric topolog$5-91, North-Holland, Amsterdam, 2002;
MR1886668 (2003b:2004PD)omputer science [l. Bartolini, P. Ciaccia and M. PatellaSinng
processing and information retrievad23—431, Lecture Notes in Comput. Sci., 2476, Springer,
Berlin 2002], and biology and medicine [C. Semple and M. A. StleylogeneticsOxford Univ.
Press, Oxford, 2003yIR2060009 (2005g:9202})

The authors first give some basic properties of metric segments in metric trees using tl
known results for metric segments in metric spaces. They proveMhatJ, (a, f] for ev-
ery compact metric tred/ and any pointa of M where F' is the set of final points of\/
given by F':={f e M|f ¢ (x,y) forall z,y € M}. Necessary and sufficient conditions for a
metric tree to be compact are given &6 = J,.x[a, f] for all a € M and the compactness
of the closure off’. They show thatv(A) = 23(A) for every bounded subset of M where
a(A) :=inf{b>0|A C J_, E; for someE; C A, diam|(E;) < b}andB(A) := inf{b > 0]A C
Uj_, B(x;,b) for somer; € M}.

A continuous magd" between metric treed/ and N is calledk-set-contractive itx(T'(A)) <
ka(A), and is called:-ball-contractive if3(T'(A)) < kB(A) for every bounded subset of M
wherek is a non-negative real number. They prove that a function from a subset of a metric tre
to a metric tree ig-set-contractive if and only if it i%-ball-contractive and that the Lifschitz
characteristic of\/, denoted by« (M), defined bysup{b > 0| b is Lifschitz for M } is equal to2
for any metric tree where a positive real numbes called Lifschitz forM if there existsa > 1
such that for alle, y € M, r > 0, the inequalityd(z, y) > r implies that there exists € M such
that B.(z; ar) N B.(y; br) C B.(z;r), whereB.(z,r) denotes the closed ball centered:atith
radiusr.
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