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A metric segment fromx to y, denoted by[x, y], is a subset of a metric space(X, d) such that
hx,y: z → d(x, z) is an isometry from[x, y] onto [0, d(x, y)] ⊂ R, and an open metric segment
from x to y, denoted by(x, y), is [x, y] r {x, y}, whereR is the set of real numbers with the
Euclidean metric.(M,d), a metric space, is called a metric tree (T-theory orR-tree) if there
exists a unique metric segment fromx to y, and the equality[x, z] ∩ [z, y] = {z} implies the
equality[x, z]∪ [z, y] = [x, y] for all x, y, z ∈M . The study of metric trees began with J. Tits [in
Contributions to algebra (collection of papers dedicated to Ellis Kolchin), 377–388, Academic
Press, New York, 1977;MR0578488 (58 #28205)] and since then, applications have been found
for metric trees within many fields of mathematics such as geometry, topology, and group theory
[M. Bestvina, inHandbook of geometric topology, 55–91, North-Holland, Amsterdam, 2002;
MR1886668 (2003b:20040)], computer science [I. Bartolini, P. Ciaccia and M. Patella, inString
processing and information retrieval, 423–431, Lecture Notes in Comput. Sci., 2476, Springer,
Berlin 2002], and biology and medicine [C. Semple and M. A. Steel,Phylogenetics, Oxford Univ.
Press, Oxford, 2003;MR2060009 (2005g:92024)].

The authors first give some basic properties of metric segments in metric trees using the
known results for metric segments in metric spaces. They prove thatM =

⋃
f∈F [a, f ] for ev-

ery compact metric treeM and any pointa of M whereF is the set of final points ofM
given by F := {f ∈M |f /∈ (x, y) for all x, y ∈M}. Necessary and sufficient conditions for a
metric tree to be compact are given asM =

⋃
f∈F [a, f ] for all a ∈ M and the compactness

of the closure ofF . They show thatα(A) = 2β(A) for every bounded subsetA of M where
α(A) := inf{b > 0|A⊂

⋃n
j=1 Ej for someEj ⊂A, diam|(Ej)≤ b}andβ(A) := inf{b > 0|A⊂⋃n

j=1 B(xj, b) for somexj ∈M}.
A continuous mapT between metric treesM andN is calledk-set-contractive ifα(T (A)) ≤

kα(A), and is calledk-ball-contractive ifβ(T (A)) ≤ kβ(A) for every bounded subsetA of M
wherek is a non-negative real number. They prove that a function from a subset of a metric tree
to a metric tree isk-set-contractive if and only if it isk-ball-contractive and that the Lifschitz
characteristic ofM , denoted byκ(M), defined bysup{b > 0| b is Lifschitz for M} is equal to2
for any metric tree where a positive real numberb is called Lifschitz forM if there existsa > 1
such that for allx, y ∈M , r > 0, the inequalityd(x, y) > r implies that there existsz ∈M such
thatBc(x; ar)∩Bc(y; br) ⊂ Bc(z; r), whereBc(z, r) denotes the closed ball centered atz with
radiusr.
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